Search results

Search for "Rutherford backscattering spectrometry" in Full Text gives 10 result(s) in Beilstein Journal of Nanotechnology.

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • using atomic force microscopy, and induced damage profiles inside Si and Ge by Rutherford backscattering spectrometry and transmission electron microscopy. The ripple wavelength was found to scale with ion fluence, and energetic ions created more defects inside Si as compared to that of Ge. Although
  • clustering of defects leads to a subsequent increase of the damage peak in irradiated samples (for an ion fluence of ≈9 × 1017 ions/cm2) compared to that in unirradiated samples. Keywords: atomic force microscopy; ion beam; nanopatterns; radiation damage; Rutherford backscattering spectrometry; transmission
  • processes (i.e., thermal diffusion and ion-induced diffusion) [32]. This approach is based on the linear cascade model and Gaussian approximation of energy distribution as developed by Sigmund [26] to describe ion–atom collisions inside the target. Rutherford backscattering spectrometry (RBS) studies in the
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • following the method of Kumar and co-workers [36]. The Ag films were evaporated on standard Si/SiO2 wafers using a 12 nm thick Ti sticking layer. The structural characterization of the thin film samples was carried out by Rutherford backscattering spectrometry (RBS) using an ion beam of 3500 keV 4He
PDF
Album
Full Research Paper
Published 08 Jan 2020

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • quantified by Rutherford backscattering spectrometry (RBS). Ion beam analyses of the deposited films were performed using a 2.0 MeV 4He+ beam at the Van de Graaf accelerator at the Laboratori Nazionali di Legnaro, with a scattering angle of 160°. We have to highlight that the Cl content measured with RBS (in
PDF
Album
Full Research Paper
Published 12 Feb 2019

Laser irradiation in water for the novel, scalable synthesis of black TiOx photocatalyst for environmental remediation

  • Massimo Zimbone,
  • Giuseppe Cacciato,
  • Mohamed Boutinguiza,
  • Vittorio Privitera and
  • Maria Grazia Grimaldi

Beilstein J. Nanotechnol. 2017, 8, 196–202, doi:10.3762/bjnano.8.21

Graphical Abstract
  • percentage. The crystalline structure of the Ti and TiOx/Ti samples was determined by grazing angle (0.5°) X-ray diffraction by using a Bruker D-9000 instrument (Cu Kα) and Bruker diffraction suite software for the diffraction analysis. Rutherford backscattering spectrometry (RBS) measurements were run using
PDF
Album
Full Research Paper
Published 19 Jan 2017

Novel ZnO:Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells

  • Syeda Arooj,
  • Samina Nazir,
  • Akhtar Nadhman,
  • Nafees Ahmad,
  • Bakhtiar Muhammad,
  • Ishaq Ahmad,
  • Kehkashan Mazhar and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2015, 6, 570–582, doi:10.3762/bjnano.6.59

Graphical Abstract
  • 2θ = 20–70°. Rutherford backscattering spectrometry (RBS) was carried out on a 5 MV pelletron tandem accelerator with He++ beam of energy 2.085 MeV employing 26 nA current and a solid state barrier detector. Detector resolution was set at 20 keV. Incident angle during analysis was kept at 0° whereas
  • backscattering spectrometry (RBS) analysis (Figure 3a and Table 1) shows that our samples contain the correct elemental compositions regarding Zn, O and Ag and confirm the presence of Zn:O:Ag in 1:1:0.01, 1:1:0.03, 1:1:0.05, 1:1:0.1, 1:1:0.2 and 1:1:0.3 ratios in ZnO:Ag (1%), ZnO:Ag (3%), ZnO:Ag (5%), ZnO:Ag (10
  • Ag cubic structures took place through the adopted in situ doping procedure. The decrease in ZnO peak heights with the increase in Ag amount indicated that ZnO crystal structure deteriorated to smaller crystallites as silver started growing as a separate phase along the ZnO crystals. Rutherford
PDF
Album
Full Research Paper
Published 26 Feb 2015

A study on the consequence of swift heavy ion irradiation of Zn–silica nanocomposite thin films: electronic sputtering

  • Compesh Pannu,
  • Udai B. Singh,
  • Dinesh. C. Agarwal,
  • Saif A. Khan,
  • Sunil Ojha,
  • Ramesh Chandra,
  • Hiro Amekura,
  • Debdulal Kabiraj and
  • Devesh. K. Avasthi

Beilstein J. Nanotechnol. 2014, 5, 1691–1698, doi:10.3762/bjnano.5.179

Graphical Abstract
  • ; pressure spike; Rutherford backscattering spectrometry; transmission electron microscopy; Introduction Metal nanoparticles are currently receiving broad scientific and technological interest due to their unusual physical properties which are different from the bulk materials. Properties such as surface
  • shown in Figure 1. Rutherford backscattering spectrometry was performed to determine the Zn content in the silica of pristine and irradiated samples by using the 1.7 MV tandem accelerator facility at IUAC, New Delhi with 2 MeV He+ ions. A silicon surface barrier detector was used at a backscattering
  • , India National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0003, Japan 10.3762/bjnano.5.179 Abstract Zn–silica nanocomposite thin films with varying Zn metal content, deposited by atom beam sputtering technique were subjected to 100 MeV Ag ion irradiation. Rutherford backscattering
PDF
Album
Full Research Paper
Published 01 Oct 2014

A nanometric cushion for enhancing scratch and wear resistance of hard films

  • Katya Gotlib-Vainshtein,
  • Olga Girshevitz,
  • Chaim N. Sukenik,
  • David Barlam and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2014, 5, 1005–1015, doi:10.3762/bjnano.5.114

Graphical Abstract
  • was assessed by SEM (Inspect, FEI), at an accelerating voltage of 30 kV with surface gold coatings of approximately 10 nm thickness. Rutherford backscattering spectrometry (RBS). The thicknesses of the TiO2 layers were measured by Rutherford backscattering spectrometry (RBS). This work was done using
PDF
Album
Full Research Paper
Published 10 Jul 2014

Synthesis of embedded Au nanostructures by ion irradiation: influence of ion induced viscous flow and sputtering

  • Udai B. Singh,
  • D. C. Agarwal,
  • S. A. Khan,
  • S. Mohapatra,
  • H. Amekura,
  • D. P. Datta,
  • Ajay Kumar,
  • R. K. Choudhury,
  • T. K. Chan,
  • Thomas Osipowicz and
  • D. K. Avasthi

Beilstein J. Nanotechnol. 2014, 5, 105–110, doi:10.3762/bjnano.5.10

Graphical Abstract
  • formation of Au NPs embedded in the glass substrates by the 50 keV Si− ion irradiation of irregularly shaped Au nanostructures on the glass surfaces at a fluence of 3 × 1016 ions/cm2. The depth profiles of Au in the samples were obtained from high-resolution Rutherford backscattering spectrometry studies
  • , high-resolution Rutherford backscattering spectrometry (HRBS) with 500 keV He+ ions at an incident angle of 60° and a scattering angle of 65° and an energy resolution of the detector of about 1 keV was carried out at NUS, Singapore [25]. Cross sectional transmission electron microscopy (XTEM
PDF
Album
Full Research Paper
Published 29 Jan 2014

Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films

  • Jörg Haeberle,
  • Karsten Henkel,
  • Hassan Gargouri,
  • Franziska Naumann,
  • Bernd Gruska,
  • Michael Arens,
  • Massimo Tallarida and
  • Dieter Schmeißer

Beilstein J. Nanotechnol. 2013, 4, 732–742, doi:10.3762/bjnano.4.83

Graphical Abstract
  • ]. Herein the typical parameters like growth rate per cycle (GPC), density and refractive index were determined by ellipsometry whereas the elemental composition was mostly deduced from Rutherford Backscattering Spectrometry (RBS). The influence of the substrate temperature onto these parameters was
PDF
Album
Full Research Paper
Published 08 Nov 2013

The morphology of silver nanoparticles prepared by enzyme-induced reduction

  • Henrik Schneidewind,
  • Thomas Schüler,
  • Katharina K. Strelau,
  • Karina Weber,
  • Dana Cialla,
  • Marco Diegel,
  • Roland Mattheis,
  • Andreas Berger,
  • Robert Möller and
  • Jürgen Popp

Beilstein J. Nanotechnol. 2012, 3, 404–414, doi:10.3762/bjnano.3.47

Graphical Abstract
  • contaminations. Therefore, the enzymatically grown silver nanoparticles were investigated by employing different microscopic techniques, namely scanning electron microscopy (SEM) and transmission electron microscopy (TEM), together with analytical methods, namely Rutherford backscattering spectrometry (RBS) and
  • the silver nanoparticles on the substrate surface the Rutherford backscattering spectrometry (RBS) technique was applied. RBS is able to deliver significant data about the averaged three-dimensional distribution of chemical elements, which is a clear advantage compared to the aforementioned grey-scale
  • the TEM investigations thin cross sections were prepared by means of the focused-ion-beam etching technique. For the cross-section images, samples were prepared on glass substrates with DNA concentrations of 10 µM. The silver reaction time was 5 min. Rutherford backscattering spectrometry (RBS) RBS is
PDF
Album
Full Research Paper
Published 18 May 2012
Other Beilstein-Institut Open Science Activities